Requerimiento hídrico y edad de trasplante de la berenjena Solanum melongena L. bajo riego por goteo en el Valle del Rio Guarapiche
Resumen
Con la finalidad de investigar la respuesta del desarrollo de frutos de berenjena (Solanum melongena L.) cultivar Long purple a diferentes regímenes de manejo del agua de riego y edades de trasplante, se realizó un experimento en el sector San Vicente, Municipio Maturín, Estado Monagas, Venezuela, entre los meses de junio-septiembre de 2015. Se utilizó un diseño experimental de bloques al azar con tres repeticiones, con un arreglo de parcelas divididas, donde las parcelas principales fueron las diferentes hojas de riego y las subparcelas las dos edades de trasplante. Se aplicaron diez tratamientos que resultaron de la combinación de las edades de trasplante, edad 1 (30 días) y edad 2 (40 días), y cuatro criterios de riego consistentes en reemplazar el equivalente de 60 %, 80 %, 100 % y 120 % de la evapotranspiración del cultivo (ETc). Se utilizó un tanque evaporímetro tipo “A” para estimar la evapotranspiración de plantas de berenjena. Se evaluaron diferencias en número de frutos, longitud, diámetro y peso de los frutos para determinar la respuesta de los trasplantes a los diferentes tratamientos de riego. Se observó que la lámina de riego del 120 % y la edad de trasplante de 40 días mejoraron la calidad de los frutos de berenjena. Las variables más afectadas fueron el peso y el número de frutos.
Descargas
Citas
• Allen, RG; Pereira, LS; Raes, D; Smith, M. 1998. Crop Evapotranspiration: Guidelines for Computing Crop Requirements - FAO Irrigation and Drainage. Paper No. 56. FAO, Rome, Italy. 15 p.
• Araméndiz, H; Cardona, CE; Espitia, MM. 2009. Correlaciones fenotípicas , ambientales y genéticas en berenjena. Acta Agronómica 58(4):285-291.
• Araméndiz, H; Cardona, CE; Vergara, CA. 2014. Parámetros genéticos relacionados con características del fruto en berenjena (Solanum melongena L.). Revista Colombiana de Ciencias Horticolas 85(1):103-111.
• Araujo, F; Quintero, S; Salas, J; Villalobos, J; Casanova, A . 19 97. Crecimiento y acumulación de nutrientes del fruto de guayaba (Psidium guajava L.) del tipo “Criolla Roja” en la planicie de Maracaibo. Revista de la Facultad de Agronomía de la Universidad Central de Venezuela 19(4):273-283.
• Aujla, MS; Thind, HS; Buttar, GS. 2007. Fruit yield and water use efficiency of eggplant (Solanum melongena L.) as influenced by different quantities of nitrogen and water applied through drip and furrow irrigation. Scientia Horticulturae 112: 142–148.
• Bafeel, SO; Moftah AE. 2008. Physiological response of eggplants grown under different irrigation regimes to antitransplant treatments. Saudi Journal of Biological Sciences 15(2): 259-267.
• Blum, A . 2005. Drought resistance, water use efficiency, and yield potential, are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research 56: 1159–1168.
• Bozkurt Çolak, Y; Yazar, A; Sesveren, S; Colak, I. 2017. Evaluation of yield and leaf water potential (LWP) for eggplant under varying irrigation regimes using surface and subsurface drip systems. Scientia Horticulturae 219: 10–21.
• Cantero, J; Espitia, L; Cardona , C; Vergara, C; Araméndiz, H. 2015. Efectos del compost y lombriabono sobre el crecimiento y rendimiento de berenjena Solanum melongena L. Revista de Ciencias Agrícolas 32(2):56 – 67.
• Chartzoulakis, K; Drosos, N. 1995. Water use and yield of greenhouse-grown eggplant under drip irrigation. Agricultural Water Management 28: 113–120.
• Chartzoulakis K; Drosos N. 1997. Water requirements of greenhouse-grown pepper under drip irrigation. Acta Horticulturae (ISHS) 449: 175-180.
• Chaves, MM; Maroco, JP; Pereira, JS. 2003. Understanding plant responses to drought from genes to whole plant. Functional Plant Biology 30: 23–264.
• Colak, YB; Yazar, A; Çolak, İ; Akça, H; Duraktekin, G. 2015. Evaluation of crop water stress index (CWSI) for eggplant under varying irrigation regimes using surface and subsurface drip systems. Agriculture and Agricultural Science Proceedia 4: 372-382.
• Demirel, K; Genc, L; Bahar, E; Inalpulat, M; Smith, S; Kizil, U. 2014. Yield estimate using spectral indices in eggplant and bell pepper grown under deficit irrigation. Fresenius Environmental Bulletin and Advances in Food Sciences 23(5):1232-1237.
• Díaz-Pérez, JC; Eaton, TE. 2015. Eggplant (Solanum melongena L.) plant growth and fruit yield as affected by drip irrigation rate. Hor t science 50(11): 1709-1714.
• Fereres, E; Soriano, MA . 2007. Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany 58: 147–159.
• Fernández, I; Lecina, S; Ruiz-Sánchez, MC; Vera, J; Conejero, W; Conesa, MR; Domínguez, A; Pardo, JJ; Léllis, BC; Montesinos, P. 2020. Trends and challenges in irrigation scheduling in the semi-arid area of Spain. Water 12 (3): 785.
• Gaveh, EA; Timpo, GM; Agodzo, SK; Shin, DH. 2011. Effect of irrigation, transplant age and season on growth, yield, and irrigation water use efficiency of the African eggplant. Horticulture, Environment, and biotechnology 52: 13–28.
• Gil, JA; Montaño, N; Valderrama, JA . 2014. Efecto de cuatro láminas de riego y dos edades de trasplante sobre el rendimiento y producción de dos cultivares de melón (Cucumis melo L.). Revista UDO-Agrícola 14 (1): 11-21.
• Karam, F; Sabiha, R; Skaf, S; Breidy, J; Rouphael, Y; Balendonck, J. 2011. Yield and water use of eggplants (Solanum Melongena L.) under full and deficit irrigation regimes. Agricultural Water Management 98: 1307–1316.
• Kırnak, H; Taş, İ; Kaya, C; Higgs, D. 2002. Effects of deficit irrigation on growth, yield and fruit quality of eggplant under semi-arid conditions. Australian Journal of Agricultural Research 53: 1367–1373.
• Laguado, N; Marín, M; Arenas, L; Araujo, F; Castro, C; Rincón, A . 2002.Crecimiento de frutos de guayabo (Psidium guajava L.) del tipo criolla roja. Revista Facultad de Agronomía Universidad del Zulia 19(4): 273-283.
• Lovelli, S; Perniola, M; Ferrara, A; Di Tommaso, T.2007. Yield response factor to water (Ky) and water use efficiency of Carthamus tinctorius L. and Solanum melongena L. Agricultural Water. Management 92: 73–80.
• Malavolta, E. 1987. Manual de calagem e adubação das principais culturas. San Paolo Editorial. 496 p.
• Mazorra, M; Quintana, A ; Miranda, D; Fisher, G; Chávez, B. 2003. Análisis sobre el desarrollo y la madurez fisiológica del fruto de uchuva en la zona de Sumapaz (Cundinamarca). Agronomía Colombiana 21(3): 176-187.
• Méndez, M; Ligarreto, G; Hernández, M; Melgarejo, L. 2004. Evaluación del crecimiento y determinación de índices de cosecha en frutos de cuatro materiales de ají (Capsicum sp.) cultivados en la Amazonía colombiana. Agronomía Colombiana22(1): 7-17.
• Mohamed, IY; Moustafa, AM; Osman, AO; Mohmed Abdalhi, MA. 2020. Effect of irrigation systems and watering amount on yield of eggplant (Solanum melongena) under arid conditions. Agricultural and Biological Sciences Journal 6(3): 143-147.
• Montaño, N; Simosa, J; Perdomo, A. 2009. Respuesta de tres cultivares de berenjena (Solanum melogena L.) a diferentes combinaciones de fertilizante orgánico y fertilizante químico. Revista UDO Agrícola 9(4): 807-815.
• Muñoz-Falcon, JE; Prohens, J; Vilanova, S; Nuez, F.2009. Diversity y in commercial varieties and landraces of black eggplants and implications for broadening the breeder’s gen pool. Annal of Applied Biology 154(3): 453-465.
• Nagaz, K; Masmoudi, MM; Ben Mechlia, N. 2012. Yield response of drip-irrigated onion under full and deficit irrigation with saline water in arid regions of Tunisia (en linea). International Scholarly ResearchNetwork ISRN Agronomy, Article ID 562315, 8 p. Consultado 15 may. 2020. Disponible en https://doi.org/gb7rr5.
• Ozbahce, A; Tari, AF. 2010. Effects of different emitter spaces and water stress on yield and quality of processing tomato under semi-arid climate conditions. Journal of Agricultural Water Management 97: 1405–1410.
• Pervez, MA; Ayub, CM; Khan, HA; Shahid, MA; Ashraf, I. 2009. Effect of drought stress on growth, yield, and seed quality of tomato (Lycopersicon esculentum L.). Pakistan Journal of Agricultural Sciences 46(3): 174-178.
• Ranjan, A; Mishra, DH; Singh, I. 2018. Performance evaluation of drip irrigation under high-density planting of papaya. Journal of Pharmacognosy and Phytochemistry 7 (3): 2262-2270.
• Santos, GM; Oliveira, AP; Silva, JAL; Alves, EU; Costa, CC. 20 01. C ar ac terísticas e rendimento de vagem do feijão-vagem em função de fontes e doses de mater ia organica. Hor ticultur a Brasileira 19(1): 30-34.
• SAS. 2020. Software SAS/STAT (en linea). Consultado 15 may. 2020. Disponible en https://bit.ly/3dhI94v
• Serhat, AYS. 2017. The effects of irrigation regimes on the yield and water use of eggplant (Solanum melongena L.). Toprak Su Dergisi 6(2): 49-58.
• Sezen, SM; Yazar, A; Daşgan, Y; Yücel, S; Akyıldız, A; Tekin, S; Akhoundnejad, Y. 2014. Evaluation of crop water stress index (CWSI) for red pepper with drip and furrow irrigation under varying irrigation regimes. Agricultural Water Management 143: 59–70.
• Tavares, M; De Melo, A; Bueno, W. 1999. Efeito diretos e indiretos e correlações canôicas para caracteres relacionados com a produção de pimentão. Bragantia 58(1): 41-47.
• Wessel-Beaver, L. 1992. Genetic variability of fruit set, fruit weight, and yield in a tomato population grown in two high-temperature environments. Journal of the American Society for Horticultural Science 17(5): 867-870.
• Yildirim, O; Korukcu, A. 2000. Comparison of drip, sprinkler and surface irrigation systems in orchards. Faculty of Agriculture, University of Ankara, Ankara Turkey. 47 p.
• Xu, C; Leskovar, DI. 2014. Growth, physiology and yield responses of cabbage to deficit irrigation. Horticultural Science 41: 138–146.
Derechos de autor 2021 José Alexander Gil Marín, Nelson José Montaño-Mata, Gerobohan José Pérez Córcega
Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0.