Radiaciones ionizantes para inducción de mutaciones en Musa AAA para la tolerancia a sequía

  • Efraín Salazar Instituto Nacional de Investigaciones Agrícolas (INIA), Centro Nacional de Investigaciones Agropecuarias (CENIAP), Maracay. Venezuela.
  • Iselen Trujillo Universidad Nacional Experimental Simón Rodríguez (UNERS), Instituto de Estudios Científicos y Tecnológicos (IDECYT), Altos del Cují, estado Miranda. Venezuela
  • Luis Castro Instituto Nacional de Investigaciones Agrícolas (INIA), Centro Nacional de Investigaciones Agropecuarias (CENIAP), Maracay. Venezuela.
  • Elba Vallejo Instituto Nacional de Investigaciones Agrícolas (INIA), Centro Nacional de Investigaciones Agropecuarias (CENIAP), Maracay. Venezuela.
  • María Torrealba Instituto Nacional de Investigaciones Agrícolas (INIA), Centro Nacional de Investigaciones Agropecuarias (CENIAP), Maracay. Venezuela.
Palabras clave: mutaciones inducidas, cultivo in vitro, mejoramiento genético, tolerancia a la sequía

Resumen

Las musáceas tienen gran importancia nutritiva, socioeconómica y cultural; las explotaciones comerciales del rubro se ven severamente afectadas por la falta de agua. Los prolongados períodos de sequía han ocasionado el abandono del cultivo debido a la alta inversión que conlleva su riego. Para apoyar el desarrollo sustentable de comunidades rurales y favorecer el cultivo de musáceas es necesario contar con materiales tolerantes a sequía. El mejoramiento genético tradicional es dificultoso debido a la esterilidad de la mayoría de los genotipos comerciales; la inducción de mutaciones es una herramienta valiosa para tal fin, por ello es necesario determinar condiciones para obtener materiales tolerantes a sequía mediante su uso. Se estableció la dosimetría a través del uso de yemas axilares de Musa AAA cultivadas in vitro, el medio de selección determinó la DL50 con PEG 8000. Se obtuvo in vitro la generación M1V6, las plantas regeneradas a partir de yemas irradiadas se caracterizaron morfológica y anatómicamente, comparándolas con plantas regeneradas in vitro provenientes de yemas no irradiadas.  Las  plantas  irradiadas  presentaron una morfología foliar variada y diferente de las plantas no irradiadas, un porte más vigoroso, una anatomía foliar con mayor densidad de cloroplastos y mejor organización del parénquima esponjoso. Las plantas provenientes de yemas irradiadas mantuvieron su vigor y coloración al ser sometidas a condiciones simuladas de estrés hídrico, mientras que las plantas provenientes de yemas no irradiadas mostraron síntomas evidentes de estrés al tercer día de permanecer en condiciones de sequía simulada.

Descargas

La descarga de datos todavía no está disponible.

Citas

• Akinro, A. O.; A. A. Olufayo and P. G. Oguntunde. 2012. Crop Water Productivity of Plantain (Musa sp.) in a Humid Tropical Environment. Journal of Engineering Science and Technology Review. 5(1):19-25.
• Alfaro, F. 2013. Aislamiento y cuantificación de bacterias epífitas del filoplano de banano (Musa AAA cv. Grande Naine) y selección de cepas quitinolíticas y glucanolíticas como potenciales antagonistas de Mycosphaerella fijiensis, agente causal de la Sigatoka negra. Doctoral dissertation, Instituto Tecnológico de Costa Rica. 120 p.

• Ali, M. A. 2008. Optimal dose rate of gamma irradiation and EMS concentration for mutation induction on shoot tip of Banana cv. Grand Nain. Proccedings of the 38th meeting of the NCHC. ARC Sudan. 228- 233.

• Álvarez, A.; L. Chávez-Suárez; R. Ramírez; R. Pompa y W. Estrada. 2012. Indicadores fisiológicos en plántulas de Solanum lycopersicum L., procedentes de semillas irradiadas con rayos X. Biotecnología Vegetal. 12(3):173-177.

• Álvarez, A.; L. Chávez-Suárez; R. Ramírez; R. Pompa; W. Estrada; Y. Estrada y A. Maldonado. 2013. Efecto del tratamiento de semillas con bajas dosis de rayos X en plantas de pimiento (Capsicum annuum L.). Nucleus. 53:14-18.

• Amorim, E. P.; R. K. N. Pestana; S. De Oliveira e A. Tullman-Neto. 2012. Caracterização agronômica de mutantes de bananeira obtidos por meio da radiação gama. Bragantia, Campinas. 71(1):8-14.

• Atkin, O. K.; B. R. Loveys; L. J. Atkinson and T. L. Pons. 2006. Phenotypic plasticity and growth temperature: understanding interspecific variability. J. Exp. Bot. 57:267- 281.
• Bermúdez, I.; P. Orellana; J. Pérez Ponce; J. Clavero; N. Veitia; C. Romero; R. Mujica y L. García. 2000. Mejoramiento del clon híbrido FHIA 21 con el uso de la mutagénesis in vitro. Info Musa. 9(1):16-19.

• Bidabadi, S. S.; S. Meon; Z. Wahab; S. Subramaniam and M. Mahmood. 2012. in vitro selection and characterization of water stress tolerant lines among ethyl methanesulphonate (EMS) induced variants of banana (Musa spp., with AAA genome). Aust. Jour. Crop. Sci. 6(3):567-575.

• Cabral de Melo, H.; M. E. De Castro; E. Alves y F. J. Perina. 2011. Anatomia foliar de Microtomateiros Fitocromo-Mutantes e Ultra-Estrutura de Cloroplastos. Ciênc. Agrotec., Lavras. 35(1):11-18.

• Chaves, M. and B. Davies. 2010. Drought effects and water use efficiency: improving crop production in dry environments. Functional Plant Biology 37: 3-6.

• Chen, Y. P.; Y.J. Liu; X. L. Wang; Z. Y. Ren and M. Yue. 2005. Effect of microwave and He- Ne laser on enzyme activity and biophoton emission of Isatis indigotica. J. Integrat. Plant. Biol. 47(7):849-855

• Conde-Álvarez, C. y S. Saldaña-Zorrilla. 2007. Cambio climático en América Latina y el Caribe: Impactos, vulnerabilidad y adaptación. Revista Ambiente y Desarrollo de Centro de Investigación y Planificación del Medio Ambiente (CIPMA). 23(2):23-30.

• Damour, G.; H. Ozier-Lafontaine and M. Dorei. 2012. Simulation of the growth of banana (Musa spp.) cultivated on cover-crop with simplified indicators of soil water andnitrogen availability and integrated plant traits. Field Crops Research. 130:99-108.

• Gianoli, E. 2004. Plasticidad fenotípica adaptativa en plantas. En: Fisiología ecológica en plantas: mecanismos y respuestas a estrés en los ecosistemas. Editor Hernán Marino Cabrera. Euv. Valparaíso, Chile. pp. 13-25.

• Giap, D. D.; P. N. Vinh; T. T. Tuan; N. T. H Trang; P. N. A. Thu and T. X. Du. 2012. High-frequency shoot multiplication of laba banana (Musa sp.) cultured in vitro byusing light, myo-inositol and adenin sulphate. Vietnam Academy of Science and Technology. 34:(3)180-187.

• González, R. 2007. Caracterización genética y molecular de los genes RE e ICU2 de Arabidopsis thaliana. Tesis doctoral presentada ante la Universidad Miguel Hernández. Elche, España. 151 p.

• Gopal, J.; K. Iwama; Y. Jitsuyama. 2008. Effect of water stress mediated through agar on in vitro growth of potato. In vitro Cell Dev Biol Plant. 44:221-228.

• Izquierdo, H.; D. M. Núñez; M. C. González and R. Proenza. 2012. Effects of applying of brassinosteroids analog spirostanic in banano (Musa spp.) vitro plants during acclimatization phase. Cultivos Tropicales. 33(1):71-76.

• Jain, S. M. 2010. In vitro mutagenesis in banana (Musa spp.) Improvement. Acta Hort. (ISHS). 879:605-614.

• Kavas, M.; G. Kalemtas; U. C. Ackay; A. T. Bayrak; E. Ozgur; C. Baloglu; O. Ercan; M. Yucel and H. A. Oktem. 2006. Effect on drought stress on the antioxidant system of two sunflower (Helianthus annuus) cultivars. Proceedings of the symposium on Stress and plant biology. Integrating hierarchical levels of biological organization. 24th annual meeting ESCPB. Antwerp. 20 p.

• Kulkarni, V.; T. Ganapathi; P. Suprasanna and V. Bapat. 2007. In vitro Mutagenesis in Banana (Musa spp.) using Gamma Irradiation. In: Protocols for micropropagation of woody trees and fruits, Part 3, Jain and Haggman Eds. Springer, Dodrecht, The Netherlands.pp. 543-559.

• Kulkarni, V. M.; T. R. Ganapathi; V. A. Bapat and P. S. Rao. 2004. Establishment of cell- suspension cultures in banana cv. Grand Naine and evaluation of its sensitivity to gamma-irradiation. Curr. Sci. 86:902-904.

• Lagoda, P. J. L. 2012. Effects of radiation on living cells and plants. In: Plant Mutation Breeding and Biotechnology. Shu, Q. Y.; B. P. Orster and H. Nakagawa, Eds. Ediciones IAEA. Viena. pp. 123-134.
• Lima, E. C.; A. A. Alvarenga; E. M. Castro; C. V. Vieira e J. P. R. A. D. Barbosa. 2006. Aspectos fisioanatômicos de plantas jovens de Cupania vernalis Camb. Submetidas a diferentes níveis de sombreamento. Revista Árvore, Viçosa. 30:33-41.

• Lin, L.; S.-H. Zhong; X. F. Cui; J. Li; Z.-H. He. 2012. Characterization of temperature- sensitive mutants reveals a role for receptor- like kinase SCRAMBLED/STRUBBELIG in coordinating cell proliferation and differentiation during Arabidopsis leaf development. The Plant Journal. 72(5):707- 720.

• Loveys, B. R.; I. Scheurwater, T. L. Pons; A. H. Fitter and O. K. Atkin. 2002. Growth temperature influences the underlying components of relative growth rate: an investigation using inherently fast- and slow growing plant species. Plant Cell Environ. 25:975-987.

• Mishra, P. J.; P. Suprasanna and V. A. Bapat. 2007. Effect of Single and Recurrent Gamma Irradiation on in vitro Shoot Cultures of Banana. International Journal of Fruit Science. 7(1):47-57.

• Mudibu, J.; K. K. C. Nkongolo; A. Kalonji- Mbuyi and R. B. Kizungu. 2012. Effect of Gamma Irradiation on Morpho-Agronomic Characteristics of Soybeans (Glycine max L.). American Journal of Plant Sciences. 3:331-337.

• Murashige, T and F. Skoog. 1962. A revised medium for the rapidgrowth and bioassays with tobacco tissue cultures. Phys. Plant. 5:473-497.

• Narasimhan, B. and R. Srinivasan. 2005. Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agric. For. Meteorol. 133:69-88.

• Nomura, T.; T. Kushiro; T. Yokota; Y. Kamiya; G. J. Bishop and S. Yamaguchi. 2005. The last reaction producing brassinolide is catalyzed by cytochrome P-450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis. J BiolChem. 280:17873-17879.


• Pabón, L. A. 2011. Inducción de mutaciones mediante radiaciones gamma de Passiflora edulis var edulis. Trabajo de investigación para optar al grado de Maestría en ciencias en biología-línea genética, presentado ante la Facultad de Ciencias de la Universidad Nacional de Colombia. Bogotá. 105 p.

• Pestana, R. K. N.; E. P. Amorim; C. F. Ferreira.; V. B. O. Amorim; L. S. Oliveira; C. A. S. Ledo and S. O. Silva. 2011. Genetic dissimilarity of putative gamma-ray-induced ‘Preciosa- AAAB-Pome type’ banana (Musa sp.) mutants based on multivariate statistical analysis. Genetics and molecular research. 10(4):3976-3986.

• Quiring, M. S. and T. N. Papakryiakou. 2003. An evaluation of agricultural drought indices for the Canadian prairies. Agric. For. Meteorol. 118:49-62.

• Ramírez, R.; L. M. González; Y. Camejo; Y. Fernández y N. Zaldívar. 2006 Estudio de radiosensibilidad y selección de rango de dosis estimulantes de rayos X, en cuatro variedades de tomate (Lycopersicom esculentum Mill). Cultivos Tropicales. 27(1):63-67.

• Robinson, J. C. y V. Galan. 2011. Plátanos y bananas. 2da Edición. Ediciones Mundi- prensa C.A. Madrid. 321 p.

• Robles, P. 1999. Análisis genético de mutantes de Arabidopsis thaliana con alteraciones en la morfología de la hoja. Tésis doctoral. Universidad Miguel Hernández. Alicante, España. 160 p.

• Rodríguez, N.; L. Mora; M. Marín; D. Esparza y A. Del Villar. 1996. Análisis del desarrollo foliar del cultivo del frijol (Vigna unguiculata [L.] Walp) variedad ojo negro y tres de sus mutantes en los alrededores de Maracaibo. Rev. Fac. Agron. (LUZ). 13:521-531.

• Roth, I. 1964. Microtecnia vegetal. Escuela de Biología. Facultad de Ciencias. Universidad Central de Venezuela. Imprenta Universitaria. Caracas. 88 p.
• Roux, N. S.; A. Toloza; J. Dolezel and B. Panis.2004. Usefulness of embryogenic cell suspension cultures for the induction and selection of mutants in Musa spp. Ed. Jain, S. M.; R. Swennen; Leuven, Belgium. 382 p.

• Roux, N.; A. Toloza; Z. Radecki; F. J. Zapata- Arias and J. Dolezel. 2003. Rapid detection of aneuploidy in Musa using flow cytometry. Plant Cell Rep. 21:483-490.

• Schaper, M.; E. Gitli; E. Villalobos; S. Rodríguez; N Mateo; N. Martín y A. Garduño. 2000. Impactos ambientales de los cambios en la estructura exportadora en nueve países de América Latina y el Caribe. Publicaciones CEPAL P01: 123, Santiago de Chile (Chile). pp. 1980-1995.

• Shapiro, S. S. and M. B. Wilk. 1965. An analysis of variance test for normality (complete samples). Biometrika. 52(3-4):591-611.

• Sierra, Y. M. y S. Shribru. 2010. Efecto de la benciladenina y el ácido indolacético en la propagación in vitro de bananos (Musa spp. AAA). Hombre, ciencia y tecnología. 55:167.

• Student. 1908. The Anp probable error of a mean, Biometrika. 6(1):1-25.

• Tomekpe, K.; C. Jenny y J. V. Escalant. 2004. Mejoramiento genético, análisis de las estrategias de mejoramiento convencional de Musa. Info Musa. 13(2):1-6.

• Tulmann, N. A. 1997. Mutaciones en el mejoramiento de plantas de propagación sexual. Curso Internacional de Mutaciones Inducidas en el Mejoramiento de las Plantas, Monagas, Venezuela. 7 p.

• Wilhite, D. A. 2000. Drought as a natural hazard. In: Drought: A Global Assessment. Wilhite, D. A. (ed). Routledge Publishers, London, UK. pp. 3-18.

• Wu, H.; K. G. Hubbard and D. A. Wilhite. 2004. An agricultural drought risk assessment model for corn and soybeans. Int. J. Climatol. 24:723-741
Publicado
2014-12-30
Cómo citar
Salazar, E., Trujillo, I., Castro, L., Vallejo, E., & Torrealba, M. (2014). Radiaciones ionizantes para inducción de mutaciones en Musa AAA para la tolerancia a sequía. Agronomía Tropical, 64(3-4), 185-200. Recuperado a partir de http://publicaciones.inia.gob.ve/index.php/agronomiatropical/article/view/218
Sección
Artículo original de investigación