Variation of soil biological activity in an altitudinal transect of La Sierra de San Luis, Falcon State

  • José Pastor Mogollón Universidad Nacional Experimental Francisco de Miranda (UNEFM), Departamento de Ciencias Ambientales, Coro, estado Falcón. Venezuela
  • Alicia Martínez Instituto Universitario de Tecnología Alfonso Gamero (IUTAG), Departamento de Química, Coro, estado Falcón.
Keywords: Urease activity, edaphic respiration, microbial biomass, altitudinal gradient

Abstract

The objective of this paper is to study the variation that exists in the biological activity of the soil in an altitudinal transect, product of changes associated with the vegetation, and precipitation levels in each one of the points of the gradient. The soil biological activity was quantified through the soil basal respiration, the microbial biomass carbon, and the urease activity. Six sites of sampling were selected along the transect La Chapa-Curimagua, of “Sierra de San Luis”, Falcon State. The sampling sites were the following ones: La Chapa to 720 m a.s.l.; San Diego to 1 000 m.a.s.l.; Santa Lucia to 1 100 m a.s.l.; El Palenque to 1 200 m.a.s.l.; Macanillas (M) to 1 320 m a.s.l., and Cerro Galicia (CG) to 1 400 m a.s.l. In each one of these sites, six composite soil samples were collected, to a depth of 0-10 cm. The greater C-CO soil basal respiration was observed in CG and M with values of 23.8 and 18.3 µg C-CO g-1 soil h-1, respectively.  With respect to the soil urease activity, this displayed the same tendency of the previous parameters, (160.3 ± 20.6 µg NH being observed the greater enzyme activity in M (160.30  -g-1 soil 2h-1), and the lowest values in LC (14.71 µg NHg-1 soil 2h-1). The content of organic carbon in soil studied, as well as the soil biological activity, is influenced by changes in the vegetation and changes in precipitation patterns.

Downloads

Download data is not yet available.

References

• Alef, K. 1995. Dehidrogenase activity. In: Alef, K y P. Nannipieri (Eds.). Methods in applied soil microbiology and biochemistry. Academic Press, Harcourt Brace & Company Publishers. London. England. pp. 228-231.

• Alef, K. 1995. Soil respiration. In: Alef, K., y P. Nannipieri. (Eds). Methods in applied soil microbiology and biochemistry. Academic Press, Harcourt Brace & Company Publishers. London. England. pp. 214-217.

• Anderson, J. P. 1982. Soil respiration. In: Page, A.L, R.H. Miller (Eds.). Methods of Soil Analysis, Part2, Chemical and microbiological properties. American Society of Agronomy, Madison, Wl. p.831-871.

• Anderson, T. H. and K. H. Domsch. 1990. Application of eco-physiological quotients (qCO2 and qD) on microbial biomasses from soils of different cropping histories. Soil Biol. Biochem. 22:251-255.

• Anderson, T. H. and K. H. Domsch. 1985. Determination of ecophysiological maintenance carbon requirements of soil microorganisms in a dormant state. Biol. Fertil. Soils. 1:81-89.

• Anderson, J. P. and K. H. Domsch. 1978. A physiological method for the Quantitative measurement of microbial biomass in soil. Soil. Biol. Biochem.10:215-221.

• Aranguren, J., G. Escalante and R. Herrera. 1982. Nitrogen cycle of tropical perennial crops under shade trees. I. coffee. Plant and Soil. 67:247-258.

• Bauhus, J., D. Pare and L. Cote. 1998. Effects of tree species, stand age and soil type on soil microbial biomass and activity in a southern boreal forest. Soil Biol. Biochem. 30:1 077-1.089.

• Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size analysis of soil. Agron. J. 54:464-465.

• Bremner, J. M. 1960. Determination of nitrogen in soil by the Kjeldahl method. J. Agr. Sci. 55:1-23.

• Cabrera, G. y G. Crespo. 2001. Influencia de la biota edáfica en la fertilidad de los suelos en ecosistemas de pastizales. Revista Cubana de Ciencia Agrícola. 35:3-5.

• Chapman, H. P. 1965. Cation-exchange capacity. In: Black, C.A. et al (Ed). Methods of soil analysis. II. Chemical and microbiological properties. Amer. Agr. Madison, Wisconsin. E.U. PP: 891-901.

• Clark, D., S. Brown, D. Kicklighther, J. Chambers, J. Thomlinson, J. Ni and E. Holland. 2001. Net primary production in tropical forest: an evaluation and synthesis of existing field data. Ecological Applications. 11:371-384.

• Contreras, F., C. Rivero y J. Paolini. 1995. Efecto de la incorporación de residuos orgánicos y dos tipos de labranza sobre la actividad de la ureasa en un Alfisol. Venesuelos. 3:2-6.

• Cuevas, E. and E. Medina. 1998. The role of nutrient cycling in the conservation of soil fertility in tropical forested ecosystems. In: Ecology Today: An anthology of contemporary Ecological Research. Gopal B., Patahak P. S. Saxena K. G. (edi.). International Scientific Publications, New Delhi: 263-278.

• Dalal, R. C. 1998. Soil microbial biomass: what do the number really mean?. Aust. J. Exp. Agric. 38:649-665.

• Deng, S. and M. A. Tabatabai. 1996. Effect of tillage and residue management on enzyme activities in soils. II Glycosidases. Biol. Fertil. Soils. 22:208-213.

• Doran, J.W. and T.B. Parkin. 1994. Defining and assessing soil quality. In: J. Doran, D. Coleman, D. Bezdicek, & B. Stewart. SSA Sp. Pub. 35, Madison.

• García-Gil, J; C. Plaza, N. Senesi, G. Brunetti, and A. Polo. 2004. Effects of sewage sludge amendment of humic acids and microbiological properties of a semiarid Mediterranean soil. Biol. Fertil. Soils. 39:320-328.

• García-Miragaya, J. y R. Herrera. 1971. Propiedades físicas, químicas y mineralógicas de una clinosecuencia de suelos ácidos. Agronomía Trop. 21:411-420.

• Hart, P., J. August, and A. West. 1989. Long-term consequences of topsoil mining on select biological and physical characteristics of two New Zealand loessial soils under grazed pasture. Land Degrad Rehabil 1:77-88.

• Hart, P., J. August, C. Ross and J. Julian. 1988. Some biochemical and physical properties of Tokomaru silt loam under pasture and after 10 years of cereal cropping. New Zealand J. Agric. Res. 31:77-86.

• Hashimoto, T., K. Kajima, T. Tange, and S. Sasaki. 2000. Changes in carbon storage in fallow forest in tropical lowland of Borneo. Forest Ecology and Management. 126:231-237.

• Haynes, R. J. 2000. Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand. Soil Biol. Biochem 32:211-219. Holdridge, L. R. 1967. Life Zone Ecology. Tropical Science Center. San José, Costa Rica.

• Infostat. 2002. Infostat versión 1.1 Manual del ususario. Grupo Infostat, FCA. Universidad Nacional de Córdoba. Primera Edición. Ed. Brujas. pp: 61-90.

• Kandeler, E and H. Gerber. 1988. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils 6, 68-72.

• López-Hernández, D. 1977. La química del fósforo en suelos ácidos. Universidad Central de Venezuela, ediciones de la Biblioteca. Caracas, Venezuela. p. 123.

• Martínez-Cruz, A., M. Carcaño-Montiel, y L. López- Reyes, L. 2002. Actividad biológica en un transepto altitudinal de suelos de La Malinche, Tlaxcala. Terra. 20:141-146.

• Mc Lean, E.O. 1982. Soil pH and lime requirement. In: Page AL, Miller RH, Keeney DR (eds). Methods of Soil Analysis, part 2. Am Soc. Agron., Soil Sci. Soc. Am., Madison, Wisconsin, pp. 199-224.

• Mogollón, J. P. y O. Tremont. 2002. Efecto del cambio de uso de la tierra sobre la actividad ureásica en agroecosistemas cafetaleros del estado Falcón. Croizatia. 3:16-25.

• Mogollón, J. P., J. García-Miragaya, L. F. Sánchez, N. Chacón y J. Araujo. 1997. Nitrógeno potencialmente disponible en suelos de cafetales bajo diferentes árboles de sombra. Agronomía Trop. 47:87-102.

• Murphy, J. and J. P. Riley. 1962. A modified single extraction solution method for the determination of phosphate in natural waters. Analytical Chimica Act. 27:31-36.

• Nielsen, T., T. Bonde and J. Sorensen. 1998. Significance of microbial urea turnover in N cycling of three Danish agricultural soils, FEMS Microbiology Ecology. 25:147-157.

• Ochoa, G., J. Oballos, J. Sánchez, J. Sosa, J. Manrique y J. Velásquez. 1981. Variación del carbono orgánico en función de la altitud. Cuenca del río Santo Domingo. Mérida- Barinas, Venezuela. Rev. Geog. Venez. 41:79-87.

• Ochoa, G., D. Malagón y J. Pereyra. 1981. El contenido de materia orgánica, nitrógeno total y factores que los afectan en algunos suelos de Venezuela. CIDIAT, SC-44. 9 p.

• Odum, E. 1985. Trends expected in stressed ecosystems. BioScience. 35:419-422.

• Parinkina, O., N. Klyuyuba and L. Petroba. 1994. Biological activity and effective fertility of soil. Eurasian Soil Sci. 26:73-82.

• Parker, G. 1994. Soil fertility, nutrient acquisition, and nutrient cycling. En McDade L, Bawa KS, Hespenheide HA, Harshorn GS (Eds.). La Selva: Ecology and Natural History of a Neotropical Rain Forest. University of Chicago Press. Chicago, EEUU. pp. 53-63.

• Quirós, S. y M. González. 1979. Neutralización del aluminio intercambiable y aprovechamiento del fósforo en tres suelos de Costa Rica. Agron. Costarr. 3:137-149.

• Rojas, I. de y J. Comerma. 1985. Caracterización de los suelos ácidos de Venezuela basada en algunas propiedades físicas y químicas. Agronomía Trop. 35:83-110.

• Ruíz, M. y J. Paolini. 2004. El cultivo y el agua de riego sobre el carbono de la biomasa microbiana. Agronomía Trop. 54:161-178.

• Sánchez, B., M. Ruiz y M. Ríos. 2005. Materia orgánica y actividad biológica del suelo en relación con la altitud en la cuenca del río Maracay, estado Aragua. Agronomía Trop. 55:507-534.

• Sardans, J. and J. Peñuelas. 2004. Drought decreases soil enzyme activity in a Mediterranean Quercus ilex L. forest. Soil Biol.Biochem.37:455-461

• Tremont, O. y E. Cuevas. 2004. Carbono orgánico, nutrientes y cambios estacionales de la biomasa microbiana en las principales especies de dos tipos de bosques tropicales. Multiciencias. 4:96-103.

• Unigarro, A., H. Burbano y M. Sánchez. 2005. Evaluación de la calidad de suelos Dystric Cryandept en el Santuario de Flora y Fauna Galeras, Nariño. Acta Agronómica. 54:7-12.

• Walkley, A. and I. A. Black. 1934. An examination of the method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 37:29.

• Wardle, D., and A. Ghani. 1995. A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biol. Biochem. 27:1 601-1 610.

• Zamora, F., J. P. Mogollón y N. Rodríguez. 2005. Cambios en la biomasa microbiana y la actividad enzimática inducidos por la rotación de cultivos en un suelo bajo producción de hortalizas en el estado Falcón, Venezuela. Multiciencias. 5:62-70.

• Zoog, G., D. R. Zack, D. Ringelberg, N. MacDonald, K. Pregitzer and D. White. 1997. Compositional and functional shifts in microbial communities due to soil warming. Soil Sci. Soc. Am. J. 61:475-481.
Published
2009-12-30
How to Cite
Mogollón, J. P., & Martínez, A. (2009). Variation of soil biological activity in an altitudinal transect of La Sierra de San Luis, Falcon State. Agronomía Tropical, 59(4), 469-479. Retrieved from http://publicaciones.inia.gob.ve/index.php/agronomiatropical/article/view/411
Section
Original research article