Effect of different growth regulators on somatic embryogenesis in three cocoa cultivars
Abstract
Traditional propagation methods in cocoa cultivation are not very efficient, due to the low number of plants that are produced; these may present undesirable agronomic characteristics for producers. Somatic embryogenesis may be the most suitable route for the regeneration of cocoa accessions. The effect of 2,4-D and its combination with 6-BA and kinetin on somatic embryogenesis of cocoa was evaluated. Five concentrations of 2,4-D (0; 0,5; 1; 1,5 and 2 mg.L-1) were used combined with 0,05 mg.L-1 of 6-BA and 0,3 mg. L-1 of kinetin on the callus formation index (IC) and the formation of somatic embryos in three cocoa cultivars (SCA-6, OC-60 and CNM-4), with two types of explants (staminodes and petals). At 14 and 28 days of subculture, a differential response was evident between cultivars and type of explant in the IC. The highest IC14 and IC28 occurred in staminodes and petals grown in 0,5 mg.L-1 of 2,4-D and 6-BA, with respective values of 11,6 and 29. The highest embryogenic frequency (40 %) and the highest number of somatic embryos was obtained in staminodes of SCA-6 with 1,5 mg.L-1 of 2,4-D, unlike the embryos obtained in the petals grown in 2 mg.L-1 of 2,4-D and 6-BA. The principal component analysis showed a high correlation between the concentration of growth regulators, type of explant and the variables related to embryogenesis; as well as a low correlation of these with IC14 and IC28.
Downloads
References
• Buah, JN; Danso, E; Taah, KJ; Abole, EA; Bediako, EA; Asiedu, J; Baidoo, R. 2010. The effects of different concentrations cytokinins on the in vitro multiplication of Plantain (Musa sp.) (en línea). Biotechnology 9(3): 343-347. Consultado: 28 ene. 2017. Disponible en: https://bit.ly/3j34nHpf.
• Bustami, MU; Werbrouck, S. 2018. Somatic Embryogenesis in elite Indonesian cacao (Theobroma cacao L.). In: Jain, S; Gupta, P. (eds.) Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants. Forestry Sciences. Cham, Switzerland, Springer. Vol 85: 73-81. (en línea). Consultado: 01 jun. 2018. Disponible en: https://bit. ly/34qFGR7
• Castellarin, SD; Gambetta, GA; Wada, H; Shackel, KA; Matthews, MA. 2011. Fruit ripening in Vitis vinifera: spatiotemporal relationships among turgor, sugar accumulation, and anthocyanin biosynthesis (en línea). Journal of Experimental Botany 62 (12): 4345-4354. Consultado 08 de sep. 2018. Disponible en: https://bit.ly/3l9jGAo
• Celestino, C; Hernández, I; Carneros, E; López- Vela, D; Toribio, M. 2005. La embriogé- nesis somática como elemento central de la biotecnología forestal. Investigación Agraria: Sistema y Recursos Forestales 14(3): 345-357.
• Chatanásig, CI. 2004. Inducción de la embriogé- nesis somática en clones superiores de cacao (Theobroma cacao L.), con resistencia a enfermedades fungosas. Tesis M.Sc. Turrialba, Costa Rica. CATIE. 86p.
• Conover, WJ. 1999. Practical Nonparametric Statistics. 3ed. John Wiley & Sons, Inc., New York. 584p.
• Dai, ZW; Meddar, M; Renaud, C; Merlin, I; Hilbert, G; Delrot, S; Gomès, E. 2014. Long-term in vitro culture of grape berries and its applica- tion to assess the effects of sugar supply on anthocyanin accumulation (en línea). Journal of Experimental Botany 65 (16): 4665-4677. Consultado 08 sep. 2017. Disponible en: https://bit.ly/3gkmCGP
• Díaz-López, A A; Sánchez, D; Valera-Leal, J; Vegas García, AL. 2015. Formación de embriones somáticos en cinco cultivares de Theobroma cacao L. cultivados en Venezuela (en línea). Biotecnología Vegetal 15 (1): 27-34. Consultado 19 ago. 2018. Disponible en: https://bit.ly/34lKZBx
• Di Rienzo, JA; Casanoves, F; Balzarini, MG; González, L; Tablada, M; Robledo, CW. 2016. Infostat (en línea, programa informático). Córdoba, Argentina. Universidad Nacional de Córdoba. Consultado 12 feb. 2016. Disponible en: https://bit.ly/3gksaB0
• Driver, JA; Kuniyuki, AH. 1984. In vitro propagation of paradox walnut rootstock. Hortscience 19:507-509.
• Gallego, AM; Henao, AM; Urrea, AI; Atehortúa, L. 2016. Polyphenols distribution and reserve substances analysis in cocoa somatic embryo- genesis (en línea). Acta Biológica Colombiana 21(2): 335-345. Consultado 28 ago. 2016. Disponible en: https://bit.ly/31fLF9A.
• Garate-Navarro, MA; Arévalo-Gardini, E. 2017. Induction of somatic embryogenesis from cocoa farmer field collection of ICT – Peru (en línea). International Annals of Science 2(1): 6-11. Consultado: 16 jun. 2018. Disponible: https://bit.ly/2FJtBfD.
• Garcia, C; Correa, F; Findley, S; Almeida, AA; Costa, M; Motamayor, JC; Schnell, R; Marelli, JP. 2016. Optimization of somatic embryogenesis procedure for commercial clones of Theobroma cacao L. (en línea). African Journal of Biotechnology 15(36): 1936-1951. Consultado: 03 mar. 2017. Disponible en: https://bit.ly/3gow4bT.
• García, C; Marelli, JP; Motamayor, JC; Villela, C. 2018. Somatic embryogenesis in Theobroma cacao L. (en línea) En: Loyola-Vargas V; Ochoa-Alejo N. (eds) Plant cell culture protocols, Methods in Molecular Biology 1815:227-245. New York, United States. Human Press. Consultado: 01 oct. 2018. Disponible en: https://bit.ly/34qdJZL.
• Gómez, R. 1998. Embriogénesis somática. En: Alvarado, Y; Gómez, R; Jiménez, E; Orellana, P. (eds.). Propagación y mejora genética de plantas por biotecnología. Santa Clara, Cuba. Instituto de Biotecnología de las Plantas (IBP). v.1. p. 57-79.
• Guo, B; Haider, B; Zeb, A; Xu, LL; Wei, YH. 2011. Thidiazuron: A multi-dimensional plant growth regulator. African Journal of Biotechnology 10(45): 8984-9000.
• Henao, AM; Vásquez, T; Ospina, TM; Atehortúa, L; Urrea, AI. 2018. Evaluation of the potential of regeneration of different Colombian and commercial genotypes of cocoa (Theobroma cacao L.) via somatic embryogenesis (en línea). Scientia Horticulturae 229: 148-156. Consultado 31 may. 2018. Disponible en: https://bit.ly/32gcp9i
• Jheng, FY; Do, YY; Liauh, YW; Chung, JP; Huang, PL. 2006. Enhancement of grow th and regeneration efficiency from embryogenic callus cultures of Oncidium ‘Gower Ramsey’ by adjusting carbohydrate sources. Plant Science 170: 1133-1140.
• Klem, M; Balla, J; Machackova, BI; Eder, J; Prochazka, S. 2004. The uptake and Metabolism of Benzylaminopurine in tobacco (Nicotiana tabacum L.) and Cucumber (Cucumis sativus L.) explants. Plant Growth Regulator 31(1):135-142.
• Kouassi, KM; Kaia, J; Kouame, C; Tahi, MG; Koffi, EK. 2017. Comparing the effect of plant growth regulators on callus and somatic embryogenesis induction in four elite Theobroma cacao L. genotypes (en línea). Hortscience 52(1):142–145. Consultado: 23 jun. 2018. Disponible en: https://bit.ly/3aKWaEW.
• Li, Z; Traore, A; Maximova, S; Guiltinan, M. 1998. Somatic embryogenesis and plant regeneration from floral explants of cacao (Theobroma cacao L.) using Thidiazuron. In Vitro Cellular and Developmental Biology Plant 34: 293-299.
• Lloyd, G; McCown, B. 1981. Commercially feasible micropropagation of Mountain Laurel, Kalmia latifolia, by use of shoot-tip culture. Combined Proceedings, International Plant Propagators Society 30: 421-427.
• Magyar-Tábori, K; Dobránszki, J; Teixeira da Silva, JA; Bulley, SM; Hudák, I. 2010. The role of cytokinins in shoot organogenesis in Apple (en línea). Plant Cell Tiss Organ Cult. 101:251–267. Consultado: 28 ene. 2018. Disponible en: https://bit.ly/2EmEEee
• Monsalve, LS; Garcia, CY; Sigarroa, A. 2005. Obtención de embriones somáticos primarios de Theobroma cacao en clones de interés regional para el Departamento Norte de Santander, Colombia. Revista de la Universidad Francisco de Paula 1: 21-29.
• Quainoo, AK; Dwomo, BI. 2012. The effect of TDZ and 2,4-D concentrations on the Induction of Somatic Embryo and Embryogenesis in Different Cocoa Genotypes. Journal of Plant Studies 1 (1): 72-78.
• Quintero, ML; García, LN. 2010. La producción de cacao en Venezuela: Hacia una nueva ruralidad. Actualidad Contable FACES 13(20): 114-123.
• Quintero, ML; Anido, JD; Azuaje, A. 2017. El consumo de cacao en Venezuela y en el mundo desde una perspectiva sostenible (1960-2014) (en línea). Agroalimentaria 23(45): 23-49. Consultado 18 mar 2018. Disponible en: https://bit.ly/3heRZ6N
• Quiñones-Galvez, J; Hernández de la Torre, M; Quirós Molina, Y; Capdesuñer Ruiz, Y; Trujillo Sánchez, R. 2016. Factores que controlan el contenido de fenoles en el cultivo de callos de Theobroma cacao (en línea). Cultivos Tropicales 37: 118-126. Consultado 20 ago. 2018. Disponible en: https://bit.ly/2FCWIkH
• Quiroz-Figueroa, F; Mendez-Zeel, M; Larque- Saavedra, A; Layola -Vargas, V. 20 01. Picomolar concentrations of salicycates induce cellular growth and enhance somatic embriogénesis in Coffea Arabica tissue culture. Plant Cell Reports 20: 679-684.
• Ramos, G.; A. Gómez. 2002. Propagación del cacao: Injerto parche. Centro de Investigaciones Agropecuarias del Estado Mérida. Maracay, Venezuela. INIA. 26p. (Serie D, N°2).
• Su, YH; Zhao, XY; Liu, YB; Zhang CL; O’Neill, SD; Zhang, XS. 2009. Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis (en línea). The Plant Journal 59(3): 448– 460. Consultado: 05 feb. 2017. Disponible en: https://bit.ly/3glcY6u
• Velásquez, R; Sandrea, Y; Betancourt, C; Mata, J. 2006. Embriogénesis somática en cultivares de cacao venezolano. Agronomía Tropical 56(1):61-74.
• Williams, EG; Maheswaran, G. 1986. Somatic Embryogenesis: Factors Influencing Coordinated Behaviour of Cells as an Embryogénie Group. Annals of Botany 57: 443-462.
Copyright (c) 2018 Andy Arturo Díaz-López, Efraín G. Salazar Yamarte, José Gerardo Albarrán-Rincón, Carlos Marín, Ariadne Lucrecia Vegas García
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.