Identification of microsatellite markers associated Fe and Zn concentration in the grain of the common bean in F2:3 families

  • Gino Campos Tirado Instituto Nacional de Investigaciones Agrícolas (INIA), Centro Nacional de Investigaciones Agropecuarias (CENIAP), Maracay. Venezuela.
  • Margaret Gutiérrez Instituto Nacional de Investigaciones Agrícolas (INIA), Centro Nacional de Investigaciones Agropecuarias (CENIAP), Maracay. Venezuela.
  • Catalina Ramis Universidad Central de Venezuela (UCV), Facultad de Agronomía (FAGRO), Centro de Investigaciones en Biotecnología Agrícola (CIBA), Maracay. Venezuela.
  • Luis Angulo Graterol Universidad Central de Venezuela (UCV), Facultad de Agronomía (FAGRO), Centro de Investigaciones en Biotecnología Agrícola (CIBA), Maracay. Venezuela.
  • Zuleyvi Henriquez Instituto Nacional de Investigaciones Agrícolas (INIA), Centro Nacional de Investigaciones Agropecuarias (CENIAP), Maracay. Venezuela.
Keywords: Genomic DNA, , plant breeding, QTL, genetic markers, Phaseolus vulgaris L.

Abstract

The increase of micronutrients in food grains, with plant breeding techniques is a strategy in the prevention and management of their deficiencies. The objective of this study was to identify the association between microsatellite markers and the concentration of Fe and Zn, as well as the inheritance of these characters in common bean. A total of 77 families for the F2:3  population of the single cross IPR-TiziuxI//2581 were evaluated; using the SSRs BM-143, BM-181, BM-183, AG-1, BMd-001 and BMd-028. The segregation was verified for each microsatellite and the QTLs were identified by single marker analysis, one at a time, with MapDisto Program, using a significance level of P<0,05 corresponded to a minimum LOD of 3,0 and r maximum of 0,3. The characters showed continuous distribution, corresponding to quantitative inheritance; and intermediate families and / or major or minor families are shown, which indicates transgressive phenotypic expression. The SSRs BM-181, BM-183, BMd-001, and BMd-028 had Mendelian segregation ¼:½:¼, and the SSRs BM-143 and AG-1 showed distortion in the segregation. Four QTL associated with Fe and Zn concentration were detected, two for the Fe variable detected in the primers BM-183 (chromosome 7) with F = 3.10 and BMd-001 (chromosome 3) with F = 3.56; and two QTL for Zn, in the SSRs BM-183 and BMd-001 (chromosome 3), for an F of 3.31 and 3.41 respectively. These QTLs detected, facilitates the selection of lines with high nutritional value, with a view to achieving the biofortification of the crop.

Downloads

Download data is not yet available.

References

• Acosta, G; Mendoza, F; Aguilar, B; Esquivel, G; Rodríguez, R; Guzmán, S. 2008. Negro Guanajuato, nueva variedad de fríjol para el centro de México. Revista Agricultura Técnica en México 34:107-111.

• Abbaspour, N; Hurrell, R; Kelishadi, R. 2014. Review on iron and its importance for human health. Journal of Research in Medical Sciences 19(2):164-174.

• Blair, M; Izquierdo, P; Astudillo, C; Grusak, M. 2013. A legume biofortification quandary: variability and genetic control of seed coat micronutrient accumulation in common beans. Frontiers in Plant Science. Plant Physiology 4:14 p.

• Blair, M; Astudillo, C; Rengifo, J; Beebe, S; Graham, R. 2011. QTL analyses for seed iron and zinc concentrations in an intra-gene pool population of Andean common beans (Phaseolus vulgaris L.). Theoretical and Applied Genetics 122(3): 511-521.

• Blair, M; Medina, J; Astudillo, C; Rengifo, J; Beebe, S; Machado, G; Graham, R. 2010. QTL for seed iron and zinc concentration and content in a Mesoamerican common bean (Phaseolus vulgaris L.) population. Theoretical and Applied Genetics. 121(6): 1059-1070.

• Blair, M; Iriarte, G; Beebe, S. 2006. QTL analysis of yield traits in an advanced backcross population derived from a cultivated Andean wild common bean (Phaseolus vulgaris L.) cross. Theoretical Applied Genetics 112: 1149-1169.

• Brigide, P; Canniatt-Brazaca, S; Silva, M. 2014. Nutritional characteristics of biofortified common beans. Food Science Technology 34(3):493-500.

• Campos-Tirado, GL. 2018. Asociación entre marcadores microsatélites y la concentración de Fe y Zn en el grano de la caraota (Phaseolus vulgaris L.), con miras a la biofortificación del cultivo. Tesis de doctorado. Maracay, Venezuela, INIA-ESAT. 114 p.

• Castañeda, R; Ramis, C; Pérez, D. 2014. Asociación entre marcadores microsatélites y el gen de resistencia a la bacteriosis común en fami- lias F2:4 de Phaseolus vulgaris L. Agronomía Tropical 64(3-4):133-141.

• Chaveco, O; Padrón, M; Permuy, N; Ruiz, B; Pachon, H; Beebe, S; Selva, L. 2006. Biofortificación del fríjol común con hierro y zinc una alternativa en la estrategia de diversificación alimentaria en Cuba (en línea). Agrosalud. Consultado 10 feb. 2016. Disponible en https://bit.ly/2YlZ5yM.

• Di Rienzo, J; Casanoves, F; Balzarini, M; González, L; Tablada, M; Robledo, C. 2017. InfoStat versión 2017, Grupo InfoStat. FCA, Universidad Nacional de Córdoba, Argentina. Disponible en https://bit.ly/3j4Haol

• FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura, Italia). 2017. Iniciativa de América Latina y Caribe sin hambre (en línea). Consultado 20 feb. 2017. Disponible en https://bit.ly/31jdrSH

• FEDEAGRO (Confederación de Asociaciones de Productores Agropecuarios, Venezuela). 2017. (en línea). Consultado 25 ene. 2018. Disponible en https://bit.ly/31kvNTf.

• Garris, A; Mccouch, S; Kresovich, S. 2003. Population structure and its effect on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice (Oryza sativa L). Genetics 65:759-769.

• Gepts, P; Koinange, E. 1992. Hybrid Weakness in Wild Phaseolus vulgaris L. The Journal of Heredity 83(2):135-139.


• Granito, M; Guinand, J; Pérez, D; Pérez, S. 2009. Valor nutricional y propiedades funcio nales de Phaseolus vulgaris L. procesada: un ingrediente potencial para alimentos. Interciencia 34(01):64-70.

• G r a ni to, M; Pé r ez, D; G ui n a n d, J. 2 0 0 6 . Composición química y nutricional de variedades de (Phaseolus vulgaris L.) cultivadas en Venezuela. Agronomía Tropical 56(4):513-522.

• Gutiérrez, M; Rincón, C. 2011. Caracterización de la variabilidad genética mediante el uso de marcadores RAPDs, de un grupo de genotipos nativos y comerciales de caraota en Venezuela. Agronomía Tropical 61(1):73-83.

• Izquierdo, P; Astudillo, C; Blair, M; Iqbal, A; Raatz, B; Cichy, K. 2018. Meta-QTL analysis of seed iron and zinc concentration and content in common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics 131:1645-1658.

• Lorieux, M. 2012. MapDisto. Fast and efficient computation of genetic linkage map. Molecular Breeding 30:1231-1235.

• Monserrate, F. 2008. Análisis del proceso de biofor- tificación de variedades de fríjol Andino de tipo comercial calima en Colombia (en línea). Bogotá: Universidad Nacional de Colombia. Consultado 17 abr. 2017. Disponible en https://bit.ly/3aOJI6Y

• Morton, NE. 1995. LODs past and present. Genetics 140:7-12.

• Mukamuhirwa, F; Tusiime, G; Mukankusi, M. 2015. Inheritance of high iron and zinc concentration in selected bean varieties. Euphytica 205(2):349-360. https://bit.ly/3ho8bT7

• Nybom, H; Esselink, G; Werlemark, G; Vosman, B. 2004. Microsatellite DNA marker inheritance indicates preferential pairing between two highly homologous genomes in polyploidy and hemisexual dogroses, Rosa L. Sect. Caninae DC. Heredity 92:139-150.

• OMS (Organización Mundial de la Salud, Suiza). 2018. Nutrición (en línea). Consultado 25 sep. 2018. Disponible en https://bit.ly/2YoxZHm

• Pérez-Vega, E; Pañeda, A; Rodríguez, C; Campa, A; Giraldez, R; Ferreira, J. 2010. Mapping of QTL for morpho-agronomic and seed quality traits in a RIL Population of common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics 120:136-138.

• Rodríguez, E; Lorenzo, E; Melgar, A; Palacios, E; Gonzales , F; Quintero, A . 2009. Biofortificación del fríjol común en Panamá con micronutrientes (en línea). En: Seminario de Biofortificación en Panamá. Consultado 02 mar. 2018. Disponible en https://bit.ly/32dX5tR

• Semagn, K; Bjornstad, A; Ndjiondjop, N. 2006. A review of molecular markers methods for plant. African Journal of Biotechnology 5(25):2540-2568.

• Shapiro, S; M. Wilk. 1965. An analysis of variance test for normality. Biometrika 52(3-4):591-611.

• Teixeira, R; Lima, D; Abreu, A; Ramalho, M. 2015. Implications of early selection for grain color on iron and zinc content and productivity of common bean. Plant Breeding. 134:193-196.

• Tofiño - Rivera, A; Pastrana-Vargas, I; Melo - Ríos, A; Beebe, S; Tofiño-Rivera, R. 2016. Rendimiento, estabilidad fenotípica y conte- nido de micronutrientes de fríjol biofortificado en el Caribe seco colombiano. Corpoica Ciencia y Tecnología Agropecuaria 17(3):309-329.

• Tofiño - Rivera, A ; Tofiño - Rivera, R . 2013. Contribución de variedades biofortificadas a la seguridad alimentaria. Saarbrücken, Alemania: Editorial Académica Española. 84 p.

• Tofiño-Rivera, A; Tofiño-Rivera, R; Cabal, D; Melo, A; Camarillo, W; Pachón, H. 2011. Evaluación sensorial de fríjol (Phaseolus vulgaris L.) mejorado nutricionalmente en el norte del departamento del Cesar, Colombia. Perspectiva en Nutrición Humana 13(2):60-71.

• Vasconcellos, R; Oraguzie, O; Soler, A; Arkwazee, H; Myers, J; Ferreira, J; Song, Q; McClean, P; Miklas, P. 2017. Meta-QTL for resistance to white mold in common bean. PLoS ONE. 12: e0171685.

• Zemolin, A; Ribeiro, N; Casagrande, C; Da Silva, M; Arns, F. 2016. Genetic parameters of iron and zinc concentrations in Andean common bean seeds. Acta Scientiarum. Agronomy 38(4):439-446.

• Zeng, Z. 1994. Precision mapping of quantitative trait loci. Genetics.136: 1457-1468.
Published
2018-12-29
How to Cite
Campos Tirado, G., Gutiérrez, M., Ramis, C., Angulo Graterol, L., & Henriquez, Z. (2018). Identification of microsatellite markers associated Fe and Zn concentration in the grain of the common bean in F2:3 families. Agronomía Tropical, 68(3-4), 153-162. Retrieved from http://publicaciones.inia.gob.ve/index.php/agronomiatropical/article/view/479
Section
Original research article