Genetic diversity of Rubus species determined by RAPD

  • Sara Roa Instituto Nacional de Investigaciones Agrícolas (INIA), estado Táchira. Venezuela.
  • Hilda Fernández Instituto Nacional de Investigaciones Agrícolas (INIA), Centro Nacional de Investigaciones Agropecuarias (CENIAP), Maracay. Venezuela.
  • Luis Castro Instituto Nacional de Investigaciones Agrícolas (INIA), Centro Nacional de Investigaciones Agropecuarias (CENIAP), Maracay. Venezuela.
  • Nora Useche Instituto Nacional de Investigaciones Agrícolas (INIA), estado Táchira. Venezuela.
Keywords: Rubus glaucus Benth, Rubus idaeus L., blackberry, wild species, DNA, molecular markers

Abstract

The andean blackberry (Rubus glaucus Benth) belongs to the family Rosaceae, which includes many cultivated and wild species. In Venezuela R. glaucus, is cultivated in Táchira, Merida, Trujillo, Lara and Aragua states. Promising wild species grow close to R. glaucus, including R. idaeus known as raspberry. Lack of commercial varieties of blackberry, as well as for the preservation of wild species, raises the need for genetic improvement. The objective of this work was the amplification of DNA by RAPD markers in species of the genus Rubus of Táchira and Aragua states, to determine the genetic diversity. DNA was extracted from fresh leaves of R. glaucus, R. idaeus and Rubus spp. 23 RAPD primers were used, and OPA10, OPA18, OPW06, OPB09, OPM10, OPK20 were selected, which produced 44 bands of which 38 were polymorphic. OPW06 was the most informative initiator with a PIC of 0.38. The cluster analysis and principal coordinates separated the species R. Idaeus, other species and also discriminated species from Táchira state with regard to Aragua state. The similarity between genotypes in the same state indicates a probable influence of pollen exchange  between  wild  and  cultivated  species, as well as the exchange of clonally propagated materials used by the producers. These results may be used in the conservation of species and genetic improvement that includes interspecific crosses.

Downloads

Download data is not yet available.

References

• Antonius, K. and H. Nybom. 1995. Discrimination between sexual recombination and apomixis/automixis in a Rubus plant breeding programme. Hereditas. 123:205-213.

• Azofeifa, A. 2006. Uso de marcadores moleculares en plantas; aplicaciones en frutales del trópico. Agronomía Mesoamericana.17(2):221-242.

• Badjakov, I., E. Todorovska, V. Kondakova, R. Boicheva and A. Atanassov. 2006. Assessment the genetic diversity of bulgarian raspberry germplasm collection by Microsatellite and RAPD markers. Journal of Fruit and Ornamental Plant Research. 14(suppl. 1):61-76.

• Bushakra, J., M. Stephens, A. Atmadjaja, K. Lewers, V. Symonds, J. Udall, D. Chagne, E. Buck and S. Gardiner. 2012. Construction of black (Rubus occidentalis) and red (R. idaeus) raspberry linkage maps and their comparison to the genomes of strawberry,apple, and peach. Theoretical and Applied Genetics. 125:311-327.

• Fernández, H., E. Soto, E. Salazar y M. Betancourt. 2010. Análisis RAPD entre y dentro de poblaciones derivadas de girasolsilvestre x cultivado. Agronomía Tropical. 60(3):263-269.

• Gee-Suck, E., Ch. Byung-Yeoup, R. Bandopadhyay, Y. Nam-Hee, Ch. Dong- Geun and Y. Song Joong. 2011. Phylogenic relationships of Rubus species revealed by Randomly Amplified Polymorphic DNA markers. Journal of Crop Science and Biotechnology. 11(1):39-44.

• Graham, J. and R. McNicol. 1995. An examination of the ability of RAPD markers to determine the relationships within and between Rubus species. Theoretical and Applied Genetics. 90:1128-1132.

• Gutiérrez, M., y C. Rincón. 2011. Caracterización de la variabilidad genética mediante el uso de marcadores RAPDs, de un grupo de genotipos nativos y comerciales de caraota en Venezuela. Agronomía Tropical. 61(1):73-83.

• Hammer, Ø., D. Harper and P. Ryan, 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica. 4(1):9. Available online: https://bit.ly/2TGnRYK [Jul. 20, 2013].

• Han-Wu, Z., W. Xiao-Rong, Z. Bi-Feng, X. Wu- Feng, L. Yuan, and Ch. Qing. 2009. Genetic relationships among 17 bramble cultivars and 11 wild excellent Rubus germplasms from China revealed by RAPD. Agricultural Journal. 4:179-183.

• Harshman, J. 2012. Evaluation of raspberry (Rubus sp.) genotypes for postharvest quality and resistance to Botrytis cinerea. Tesis Masters of Science. University of Maryland. Oregon, USA. 76 p. Available online: https://bit.ly/2wNxZWE. [Ago.08, 2013].

• InfoStat. 2011. InfoStat versión 2.15 Grupo InfoStat. Facultad de Ciencias Agropecuarias (FCA), Universidad Nacional de Córdoba, Argentina.

• Laurentin, H. 2009. Data analysis for characterization of plant genetic resources. Genetic Resources and Crop Evolution. 56:277-292.

• Lee, J., M. Dossett and Ch. Finn. 2012. Rubus fruit phenolic research: The good, the bad, and the confusing. Food Chemistry.

• Marulanda, M. y M. Márquez. 2001. Caracterización de la diversidad genética de Rubus glaucus Benth con marcadores moleculares (RAPD). Actualidades Biológicas. 23(74):57-63.

• Marulanda, M. y M. Márquez. 2002. Evaluación de la estabilidad genética de vitroplantas de Rubus glaucus mediante marcadores moleculares (RAPD). Actualidades Biológicas. 24(76):31-36.

• Marulanda, M., A. López and S. Aguilar. 2007. Genetic diversity of wild and cultivated Rubus species in Colombia using AFLP and SSR markers. Crop Breeding and Applied Biotechnology. 7:242-252.

• Moore, P. and D. Trople. 1999. Crossability of Rubus species with red raspberry in the wsu breeding program. Acta Horticulturae (International Society for Horticultural Science). 505:357-362. Available online: https://bit.ly/2TWpsZb [Jul. 07, 2013].

• Pardo, A., A. Hernández y N. Méndez. 2009. Caracterización molecular de siete clones de ajo (Allium sativum L.) mediante la técnica RAPD. Bioagro. 21(2):81-86.

• Patamsytė, J., D. Zvingila, J. Labokas, V. Baliuckas, L. Balčiūnienė, V. Kleizaitė and V. Rančelis. 2008. Study of genetic diversity in wild raspberry (Rubus idaeus L.) germplasm collection using morphological characters and RAPD markers. Biologija. 54(2):66-74.

• Patamsytë, J., D. Zvingila, V. Maþonytë, V. Kleizaitë, L. Baliucka, V. Balèiûnienë and V. Ranèelis. 2005. Assessement of ecological impact on genetic diversity among populations of Rubus idaeus L. Biologija. 4:24-28.
• Pérez-Almeida, I., S. Vázquez, D. Pérez, y E. Salazar. 2010. Diversidad genética en seis especies de Passiflora spp. utilizando RAPD. Revista de la Facultad de Agronomía de la Universidad del Zulia (LUZ). 27:347- 359.

• Roa, S. 2014. Variabilidad genética en mora (Rubus spp.) presente en los estados Táchira, Mérida y Aragua y su conservación in vitro. Tesis doctoral. Escuela Socialista de Agricultura Tropical (ESAT). Maracay, Venezuela. 103 p.

• Rohlf, F. J. and R. R. Sokal. 1981. Comparing numerical taxonomic studies. Systematic Biology. 30:459-490.

• Roldán-Ruiz, I., E. Dendauw, A. Van Bocktaele, A. Depicke and M. De Loose. 2000. AFLP markers reveal high polymorphic rates in ryegrass (Lolium spp.). Molecular Breeding. 6:125-134.

• Salazar, B., H. Laurentín, M. Dávila and M. Castillo. 2006. Reliability of the RAPD technique for germplasm analysis of sesame (Sesamun indicum L.) from Venezuela. Interciencia. 31(6):456-450.

• Sneath, P. H. A. and R. R Sokal. 1973. Numerical taxonomy: the principles and practice of numerical classification. San Francisco: Freeman. 573 p.

• Stafne, E., J. Clark, C. Matthew, M. Pelto and J. Lindstrom. 2003. Discrimination of Rubus cultivars using RAPD markers and pedigree analysis. Acta Horticulturae (International Society for Horticultural Science). 626:119- 124. Proc. XXVI IHC – Berry Crop Breeding Eds. P. Hicklenton and J. Maas.
Published
2014-12-30
How to Cite
Roa, S., Fernández, H., Castro, L., & Useche, N. (2014). Genetic diversity of Rubus species determined by RAPD. Agronomía Tropical, 64(3-4), 227-235. Retrieved from http://publicaciones.inia.gob.ve/index.php/agronomiatropical/article/view/222
Section
Original research article