Alternatives to the Mehlich-I extraction method to estimate the P requirements in guatemalan soils
Abstract
Lack of accessibility and cost of soil analysis in both developed and developing countries reduce the effectiveness of fertilizers, and insufficient funds promote the use of soil analysis procedures with minimal validation. Of the many potential methods for P extraction and analysis, five of them are promising but is needed further research to improve validation. A survey study was done at 26 farmer-field locations (multiple sites study) and three controlled studies were performed with identical fertilizer treatments (soil incubation, greenhouse, and field). In the multiple sites study, PHW (pressurized hot water) and Olsen extractable P positively related to maize yield (r=0.60 and 0.75, respectively), but relationships of Mehlich-I and Bray-I extractable P to yield were negative (r=-0.83 and -0.74, respectively). In the greenhouse study, yield, vegetative P concentration, and the total P absorption were effectively predicted by all five methods. In the controlled field experiment, grain yield did not improve with P application, but leaf P content related to extractable P for all but the Mehlich I extraction method (R2 from 0.57 to 0.70). Extractable P was least related to P application rate with Mehlich I (R2 of 0.51 compared to 0.96 to 0.99 with other extraction methods). Overall the studies, the PHW and Olsen methods were similar and most effective, the Bray-1 and Mehlich-III methods were less consistent, and the Mehlich-I method was the least consistent of the five extraction methods tested.
Downloads
References
• Bray, R. H. and L. T. Kurtz. 1945. Determination of total organic and available forms of phosphorus in soils. Soil Sci. 59:39-45.
• Bundy, L. G., T. W. Andsraski and J. M. Powell. 2001. Management practice effects on phosphorus losses in runoff in corn production systems. J. Environ. Qual. 30:1 822-1 828.
• Chase, C., M. Duffy, J. Webb and R. Voss. 1991. An economic assessment of maintaining high phosphorus and potassium soil test levels. Am. J. of Alt. Ag., 6:83-86.
• Chien, S. H., F. Adams, F. E. Khasawneh and J. Henao. 1987. Effects of combinations of triple superphosphate and a reactive phosphate rock on yield and phosphorus uptake by corn. Soil Sci. Soc. Amer. J. 51:1 656-1 658.
• Crane, K. S., B. L. Webb, P. S. Allen and V. D. Jolley. 2006. Simplified soil analysis procedure for use in small-scale agriculture. Commun. Soil. Sci. and Plant Anal. 37:993-1 010.
• Enwezor, W. O. 1977. Soil testing for phosphorus in some Nigerian soils: I. Comparison of methods of determining available phosphorus in soils of Southeastern Nigeria. Soil Sci. 123:48-53.
• Fauchére, J. M. F. 2000. Technological gap for maize (Zea mays L.) cultivation in the Polochic watershed of Guatemala. Unpublished Doctor of Natural Sciences. Swiss Federal Institute of Technology, Zurich.
• Fixen, P. E. and J. H. Grove. 1990. Testing soils for phosphorus. In: R.L. Westerman (ed.) Soil testing and plant analysis. SSSA, Madison, WI. p. 141-180. Disponible es: from http://apps.fao.org
• Havlin, J. L., J. D. Beaton, S. L. Tisdale and W. L. Nelson. 2005. Soil Fertility and Fertilizers an Introduction to Nutrient Management (Seventh ed.). New Jersey: Prentice-Hall, Inc.
• Heckman, J. R., W. Jokela, T. Morris, D. B. Beegle, J. T. Sims, F. J. Coale, S. Herbert, T. Griffin, B. Hoskins, J. Jemison, W. M. Sullivan, D. Bumbla, G. Estes and W. S. Reid. 2006. Soil test calibration for predicting corn response to phosphorus in the Northeast USA. Agron. J. 98:280-288.
• Hunsaker-Alcântara, H. M., V. D. Jolley, B. L. Webb, P. S. Allen, R. D. Horrocks and M. L. Bueso Campo. 2007. Predicting maize yield, nutrient concentration and uptake in P and K fertilized soils: Pressurized hot water and other alternatives to Mehlich I extraction in Guatemala soils. Commun. Soil. Sci. Plant Anal. 38:1 815-1 839.
• Johnson, C. M. and A. Ulrich. 1959. II. Analytical Methods for Use in Plant Analysis. Calif. Agric. Exp. Stn. Bull. 766:30-33.
• López, M. R. F. 2002. El cultivo del maíz en Guatemala, una guía para su manejo agronómico. Inst. Cienc. Tecnol. Agric. 1:45.
• Mallarino, A. P. and A. M. Blackmer. 1992. Comparison of methods for determining critical concentrations of soil test phosphorus for corn. Agron. J. 84:850-856.
• Mehlich, A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. (Extractor de prueba de suelo Mehlich 3: Una modificación al extractor Mehlich 2) Commun. Soil. Sci. Plant Anal. 15:1 409-1 416.
• Mills, H. A. and J. B. Jones Jr. 1996. Plant Analysis Handbook II. (Manual de Análisis de Plantas II) Athens, Georgia: Micro Macro Publishing, Inc.
• Murphey, J. and J. P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27:31-36.
• Olsen, S. R., C. V. Cole, F. S. Wantanabe and L. A. Dean. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Department of Agriculture. Cir. 939, U.S. Gov. Print. Office, Washington, DC.
• Pérez, O., M. Melgar and I. Lazcano-Ferrat. 2003. Phosphorus fertilization and phosphorus-extraction method calibration for sugarcane soils. Better Crops Int. 17:26-29.
• Pilbeam, C. J., P. J. Gregory, B. P. Tripathi and R. C. Munankarmy. 2002. Fate of nitrogen-15-labelled fertilizer applied to maize-millet cropping systems in the mid-hills of Nepal. Biol. Fertil. Soils. 35:27-34.
• Ramírez, R. 1981. Nutrición del maíz en Venezuela. IV. Valores Standard y adecuados de nitrógeno, fósforo, potasio, calcio y magnesio para interpretación de análisis foliar en maíz. Agronomía Trop. 30:125-133.
• Ramírez, R., J. Tenías, L. C. de Silva, T. Rodríguez y A. Chirinos. 1989. Calibración de cuatro métodos de análisis de suelo con la respuesta del maní a la fertilización con fósforo. Agronomía Trop. 39:5-21.
• Raun, W. R. and H. J. Barreto. 1995. Regional maize grain yield response to applied phosphorus in Central America. Agron. J. 87:208-213.
• Rehm, G. W. and J.A. Lamb. 2004. Impact of banded potassium on crop yield and soil potassium in ridge-till planning. Soil Sci. Soc. Am. J. 68:629-636.
• Ryan, J., G. Estefan and A. Rashid. 2001. Soil and plant analysis laboratory Manual International Center for Agriculture Research in the dry area (2nd ed.). Aleppo, Syria.
• Saín, G. and J. Martínez. 2004. Adoption and use of improved maize by small-scale farmers in Southeast Guatemala. México: CYMMYT. Working Paper 99-04:1-25.
• Shiffler, A. K., V. D. Jolley, J. E. Christopherson, B. L. Webb and V. A. Habey. 2005. Pressurized hot water and DTPA-sorbitol as viable alternatives for soil boron extraction. II. Correlation of soil extraction to responses of boron-fertilized alfalfa. Commun. Soil. Sci. Plant Anal. 36:2 189-2 207.
• Stewart, W. M., D. W. Dibb, A. E Johnston and T. J. Smith. 2005. The contribution of commercial fertilizer nutrients to food production. Agron. J. 97:1-6.
• Ussiri, D. A., P. N. S. Mnkeni, A. F. MacKenzie and J. M. R. Semoka. 1998. Soil test calibration studies for formulation of phosphorus fertilizer recommendations for maize in Morogoro District, Tanzania. II. Estimation of optimum fertilizer rates. Commun. Soil. Sci. Plant Anal. 29:2 815-2 828.
• Viets, F. G. Jr., C. E. Nelson and C. L. Crawford. 1954. The relationships among corn yields, leaf composition and fertilizers applied. Soil Sci. Soc. Am. Proc. 19:297-301.
Copyright (c) 2010 Heather M. Hunsaker-Alcântara, Von D. Jolley, Bruce L. Webb, Phil S. Allen, R.D. Horrocks, Erick Gabriel Coronel, Marlon L. Bueso C.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.