Design extraction method pectin methylesterase (EC 3.1.1.11) in sapodilla fruit

  • Angela M. Bedoya Gómez Universidad Pedagógica Experimental Libertador (UPEL), Instituto Rafael Alberto Escobar Lara, Dpto. de Biología, Maracay. Venezuela
  • Catalina Ramis Universidad Central de Venezuela (UCV), Facultad de Agronomía (FAGRO), Centro de Investigaciones en Biotecnología Agrícola (CIBA), Maracay. Venezuela.
  • Luis Angulo Graterol Universidad Central de Venezuela (UCV), Facultad de Agronomía (FAGRO), Centro de Investigaciones en Biotecnología Agrícola (CIBA), Maracay. Venezuela.
  • Yreny De Farías Muñoz Universidad Central de Venezuela (UCV), Facultad de Agronomía (FAGRO), Centro de Investigaciones en Biotecnología Agrícola (CIBA), Maracay. Venezuela.
  • Antero R. Burgos Pérez Universidad Pedagógica Experimental Libertador (UPEL), Instituto Rafael Alberto Escobar Lara, Dpto. de Biología, Maracay. Venezuela
Keywords: Manilkara zapota, softening, sapodilla, PME, enzymes activity

Abstract

Sapodilla (Manilkara zapota [L.] ‘Prolific’) is a fruit whose difficulties of post-harvest management have limited its commercialization. During the ripening of these fruits, the most dramatic change is the loss of firmness, which causes a decrease in quality. This softening is associated with the action of the pectin methylesterase (PME, E.C. 3.1.1.11), which is an enzyme that induces degradation of the cell wall. The objective was to design a method for efficient extraction of PME, with high quality, fast and using few reagents. Physiologically ripen Sapodilla fruits from the Germplasm Bank INIA- CENIAP, Maracay, Aragua state, were used. They were stored at -20 °C. Five methods of extraction Buffer Tris HCl; Buffer PBS; Liquid nitrogen (N2L); Buffer Tris HCl + N L and NaCl, were designed. Methods were evaluated according to enzyme quality, amount (mg mL-1  protein) and extraction. The analysis of variance showed highly significant differences (P<0.01) among the methods and Duncan mean comparisons determined that the liquid nitrogen method extracted more protein (231 mg ml-1) with a catalytic activity of 1.97 µmol acid min-1, excelling the other methods and the control with values ranging from 0.13 µmol acid min-1  up to 0.6 µmol acid min-1. Therefore, the C method is the most efficient, with higher protein yield and lower time (two hours). However, purification and characterization of PME for either agroindustrial purposes or biotechnological applications are recommended.

Downloads

Download data is not yet available.

References

• Bajard, C., C. Fauveau, C. Grassin y P. Pellerin. 2006. Enzimas para la enología. Modo de producción, modo de acción e Impacto en la transformación de la uva en vino. Revista Enología (Año III). 5:82-85.

• Bedoya, A. 2002. Actividad de las enzimas poligalacturonasa, pectinmetilesterasa, celulasa y patrón de proteínas durante la maduración de frutos de níspero (Manilkara zapota var. Prolific). Trabajo para optar al grado de Magíster Scientiarum en Botánica Agrícola. Facultad de Agronomía, Universidad Central de Venezuela. 128 p.

• Bedoya, A. 2012. Purificación y caracterización de las isoenzimas de la pectina metilesterasa en frutos de níspero (Manilkara zapota var. Prolific). Tesis doctoral presentada como requisito para optar al título de doctor en Ciencias Agrícolas. Facultad de Agronomía, Universidad Central de Venezuela. 109 p.

• Bradford, M. 1976. A rapid sensitive assay for the quantition of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72:248-254.

• Carabali, I., C. Narváez y L. Restrepo. 2009. Extracción y medida de actividad de pectin metil estearasa en pitaya amarilla (Acanthocereus pitajaya), enzima relacionada con el ablandamiento. Acta Biológica Colombiana. 14(2):73-82.

• Díaz-Sobac, R., J. De La Cruz, A. Vázquez, C. Beristain and H. García. 1997. Evaluation of softening and associated enzyme activities during the ripening of coated ‘Manila’ mangoes. Journal Horticultural Science. 72:749-753.

• Drayen, M. and P. Vat Cutsem. 2008. Pectin methylesterases induce an abrupt increase of acidic pectin during strawberry fruit ripening. Journal of Plant Physiology. 165:1152-1160.
• Hagerman, A. and P. Austin. 1986. Continuos spectrophotometric assay for plant pectin methylesterase. Journal of Agricultural and Food Chemistry. 34:440-444.

• Laborem, G., M. Figueroa, L. Rancel y L. Bandres. 1981. Estudio de la calidad de la fruta en las principales variedades comerciales de níspero en Venezuela. VIII Convención Anual de Fruticultores. Fondo Nacional de Investigaciones Agropecuarias (FONAIAP). 12 p.

• Micheli, F. 2001. Pectin methylesterase: cell wall enzymes with important roles in plant physiology. Trends in Plant Science. 6(9):414-419.

• Monzón, P. 1992. Introducción al diseño de experimentos. Alcance 34. Facultada de Agronomía, Universidad Central de Venezuela (FAGRO-UCV). Maracay. 167 p.

• Pérez-Almeida, I. y N. Carpita. 2006. Las β-galactosidasas y la dinámica de la pared celular. Interciencia. 31(7):476-483.

• Rodrigo, D., C. Corte´s, E. Clynen, L. Schoofs, A. Van Loey y M. Hendrickx. 2006. Thermal and high-pressure stability of purified polygalacturonase and pectinmethylesterase from four different tomato processing varieties. Food Research International. 39:440-448.

• Rodríguez, J. y L. Restrepo. 2011. Extracción de enzimas pécticas del epicarpio de lulo (Solanum quitoense lam) involucradas en el proceso de ablandamiento. Acta Biológica Colombiana. 16(2):193-204.

• Vovk, I. and B. Simonovska. 2007. Isolation of tomato pectin methylesterase and polygalacturonase on monolithic columns. Journal of Chromatography A. 1144:90-96.
Published
2014-12-30
How to Cite
Bedoya Gómez, A. M., Ramis, C., Angulo Graterol, L., De Farías Muñoz, Y., & Burgos Pérez, A. R. (2014). Design extraction method pectin methylesterase (EC 3.1.1.11) in sapodilla fruit. Agronomía Tropical, 64(3-4), 155-164. Retrieved from http://publicaciones.inia.gob.ve/index.php/agronomiatropical/article/view/215
Section
Original research article